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Abstract: Lesion analysis is a classic approach to study brain functions. Because brain function is a result of
coherent activations of a collection of functionally related voxels, lesion-symptom relations are generally
contributed by multiple voxels simultaneously. Although voxel-based lesion-symptom mapping (VLSM)
has made substantial contributions to the understanding of brain-behavior relationships, a better under-
standing of the brain-behavior relationship contributed by multiple brain regions needs a multivariate
lesion-symptom mapping (MLSM). The purpose of this artilce was to develop an MLSM using a machine
learning-based multivariate regression algorithm: support vector regression (SVR). In the proposed SVR-
LSM, the symptom relation to the entire lesion map as opposed to each isolated voxel is modeled using a
nonlinear function, so the intervoxel correlations are intrinsically considered, resulting in a potentially more
sensitive way to examine lesion-symptom relationships. To explore the relative merits of VLSM and SVR-
LSM we used both approaches in the analysis of a synthetic dataset. SVR-LSM showed much higher sensi-
tivity and specificity for detecting the synthetic lesion-behavior relations than VLSM. When applied to
lesion data and language measures from patients with brain damages, SVR-LSM reproduced the essential
pattern of previous findings identified by VLSM and showed higher sensitivity than VLSM for identifying
the lesion-behavior relations. Our data also showed the possibility of using lesion data to predict continu-
ous behavior scores. Hum Brain Mapp 35:5861–5876, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Localizing brain-behavior relationships remains a key
goal of cognitive neuroscience and clinical neurology. The
relationship between lesion site(s) and behavior may be
assessed using either functional or structural imaging. In
functional neuroimaging (e.g., functional magnetic reso-
nance imaging (fMRI)), brain activation is often presumed
to indicate a causal role of the observed region in some cog-
nitive process; however, the data generally admit a variety
of other explanations, often including the possibility that
the activity is epiphenomenal to the process of interest.
Structural imaging-based lesion-symptom mapping (LSM)
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has long been used to study brain-behavior relationships
[Bates, 2003; Bendfeldt et al., 2012; Burges, 1998) and com-
plements what can be learned from functional neuroimag-
ing by providing high-quality evidence that the integrity of
a brain region is necessary for the normal performance of
the measured function [Chatterjee, 2005; Fellows et al., 2005;
Rorden and Karnath, 2004].

Voxel-based lesion-symptom mapping (VLSM) [Bates,
2003] represents an advance over the traditional overlap-
subtraction approach by providing a statistical way to
assess brain-behavior relationships. In VLSM, the brain-
behavior relationship is assessed on a voxel-by-voxel basis.
In each voxel, patients with lesions are compared to those
without lesions on the behavioral measure. The signifi-
cance of the behavioral difference associated with lesion
status is then inferred using a two-sample t-test or non-
parametric methods such as permutation testing. Without
using prior regions-of-interest (ROIs), VLSM provides a
means to detect effects across the whole brain. However,
as a univariate method, VLSM represents a suboptimal
method for assessing the multivariate lesion-symptom
relationship. For example, it cannot consider data correla-
tions among neighboring voxels although those correla-
tions can be used to increase detection power [Kimberg
et al., 2007]. Because VLSM is often based on dichotom-
ized lesion data (either 1 [present] or 0 [absent]), which
produces low variance at each voxel, hence limited power
for predicting continuous behavioral performance (e.g.,
functional outcomes), although, that is, of great clinical
interest.

Multivariate approaches have the potential to overcome
these limitations in VLSM; however, multivariate lesion-
symptom mapping (MLSM) still remains new in the litera-
ture with few publications. In [Wang et al., 2012], we used
a partial least square (PLS)-based MLSM for simultane-
ously assessing lesion-symptom relations in the semantic
and phonological language domains. However, entering
several behavioral scores into the same PLS model makes
it difficult to associate each of the loading maps with a
specific behavior measure. When only one behavior score
is included, the PLS method is the same as VLSM. Chen
et al. [Chen et al., 2008] proposed a voxel-based Bayesian
LSM method for detecting the nonlinear, multivariate asso-
ciations between lesion locations and behavior measures
but it was designed for the dichotomized behavior scores
and provides no statistical inference for the association at
each voxel. Smith et al., 2013 reported another multivariate
lesion feature-based behavior prediction study. By includ-
ing ROI-based multivariate lesion features in a support
vector machine (SVM) [Cortes and Vapnik, 1995]-based
prediction model, they achieved very high accuracy for
predicting behavior status (presence/absence of spatial
neglect). Higher prediction power was showed by includ-
ing more features such as the lesion statuses of different
regions into the model. Using a combinatoric feature prun-
ing approach, their method can also identify regions show-
ing the most behavior (the presence of spatial attention

deficits) prediction power. While an important advance,
the two-class SVM-classification behavior status prediction
requires a dichotomization of the continuous behavior sta-
tuses into a binary score, limiting its use in cases where
performance grades continuously between two diagnoses,
or between pathology and normality. In addition, the
brute-force combinatoric feature validating approach
makes it an impractical tool for mapping the regional
lesion-behavior relationship if lesion feature is included
from each voxel rather than ROIs. Logistic regression was
used in [Kummerer et al., 2013] to evaluate the effects of
controlling additional nuisance variables. Similar to the
two-class SVM classification, logistic regression can only
predict a binary behavior status rather than a continuous
one. In [Hope et al., 2013], high predicting accuracy was
obtained by including both lesion volume and ROI-based
regional lesion status in a Gaussian Process model Regres-
sion. Different from the other studies, Hope et al. used
continuous lesion maps rather than the binary ones.

In [Zhang et al. 2012], we piloted a machine learning
regression, the support vector regression (SVR) [Vapnik,
1995], to predict language dysfunction using the spatial
geometrical features (such as lesion volume, lesion size,
maximum lesion pattern diameter, and lesion pattern sur-
face area) of lesions. In this study, we extend that work
into a SVR-based MLSM (hereafter SVR-LSM).

SVR is an extension of SVM [Cortes and Vapnik, 1995],
which has been used in many brain imaging studies [Cox
and Savoy, 2003; LaConte et al., 2005; Mour~ao-Miranda
et al., 2005; Wang et al., 2007] and lesion analysis as well
[Smith et al., 2013]. While an SVM model is trained to
optimally separate the input data by categories, an SVR
model is trained to predict a continuous association vari-
able (the behavioral measure in LSM) with high accuracy
using all independent variables (here, all voxels’ lesion sta-
tuses) [Smola and Sch€olkopf, 2004; Vapnik, 1995]. This
multivariate (including all independent variables) input–
output relationship mapping fits precisely the goals of
MLSM.

To assess the feasibility and efficacy of SVR-LSM, we
first used synthetic data to evaluate SVR-LSM and com-
pare it to VLSM. The methods were compared for their
performance in detecting lesion-behavior correlations in
spatially distributed regions with spatially varying contri-
butions to the target lesion-behavior association. We then
evaluated SVR-LSM using previously published lesion
data and behavioral measures from patients with chronic,
poststroke aphasia. The published data are from studies
investigating what many believe to be a primary distinc-
tion between the processing of word meaning (semantics)
and word sounds (phonology). For example, in the task of
object naming, different cognitive operations are involved
in producing a semantically appropriate word versus pro-
ducing the word’s phonological segments. To investigate
the neural basis of semantic and phonological production,
the researchers collected naming data from a large group
of individuals with aphasia, from which they culled
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responses that qualified as “semantic errors” (apple named
as “pear”) and those that qualified as “phonological
errors” (apple named as “affen”). Analyses of semantic
errors (SE) with VLSM consistently identified a region in
the left anterior temporal lobe and, less consistently, pre-
frontal cortex [Schwartz et al., 2009; Schwartz et al., 2012;
Walker et al., 2011]. The VLSM of phonological errors (PE)
identified voxels concentrated in a region extending from
frontal cortex to anterior parietal lobe [Schwartz et al.,
2012]. This study used the SVR-LSM method to investigate
the lesions that give rise to each of these symptoms of
naming impairment: SE and PE. The VLSM method was
used, as well, with slight variations from the published
studies for the purpose of enabling comparison with SVR.

THEORY

LSM Through Multiple Regression

Suppose the lesion maps are X5 x0; x1; x2; . . . ; xM21ð Þ,
each element representing a lesion map with N voxels:
xm5 xm;0; xm;1; xm;2; . . . ; xm;N21

� �T
, (m50; . . . ; M21, M is

the number of subjects), and the behavior score is
y5 y0; y1; y2; . . . ; yM21ð ÞT. LSM can be equivalently
expressed as a multiple regression model:

y5XTb1b (1)

where, b5 b0; b1; b2; . . . bN21ð ÞT are the fitting coefficients
with bj representing the lesion-behavior association
strength at the jth voxel xj, and b5ðb0; b1; b2; . . . bM21ÞT
are the fitting errors.

However, solving the multiple regression model is prob-
lematic because of the colinearity between neighboring
voxels and also the under-determinacy due to the much
greater number of unknown variables N in Eq. (1) (the
number of voxels) than the number of observations M
(number of subjects). For example, a typical brain lesion
map contains millions of voxels, but there are generally at
most hundreds of participants (106 in this work). Directly
solving such an extremely under-determined problem is
mathematically unstable, meaning that there will be an
infinite number of solutions. To choose a practically mean-
ingful and physically reasonable one, we need additional
information to constrain the potential solutions.

Support Vector Regression

SVR is a machine-learning-based multiple regression
method [Drucker et al., 1996]. SVR solves the aforemen-
tioned under-determination problem by constraining the
regression model to be “flat”: to get a minimum norm for
the fitting coefficients. Because the regression model should
still meet the original conditions, the model with a mini-
mized fitting coefficient norm will be much less sensitive to
noise or perturbation in the features and will be more stable
for predicting future unknown data. Similar to SVM, SVR

also takes a trade-off between the fitting accuracy and pre-
diction accuracy. An “insensitive” threshold is used to zero
out training data fitting errors if they are less than the
threshold. By releasing the fitting precision, SVR reduces
the risk of over-fitting. Both the model flatness and small fit-
ting error insensitivity can result in better prediction accu-
racy for unknown data. When a linear fitting is not able to
meet the criteria, SVR can also project the input data into a
high-dimensional feature space using a nonlinear transform
so a linear model can be still built therein to fulfill the fitting
criteria [Cortes and Vapnik, 1995]. The nonlinear transform
depends on certain type of kernel functions. By means of a
mathematical manipulation, the so-called kernel trick [Vap-
nik, 1995], the real SVR learning process can avoid an
explicit use of the underlying kernel function, so projection
of input data into the high dimensional feature space can be
skipped, thereby greatly simplifying the complex model
learning process [Smola and Sch€olkopf, 2004].

For the ith subject’s lesion map xi and behavior score yi,
SVR can be described by

yi5wT/ xið Þ1b (2)

where / xið Þ is the function transforming the independent
variable (lesion data in this article) to a higher (even infinite)
dimensional feature space, w5 w0;w1;w2; . . .ð ÞT is the fitting
coefficient in the high dimensional space, and b is the fitting
error. Except for the transform, this model is the same as
that described in Eq. (1); and both operate in a map-wise
manner, in contrast with the voxel-wise approach used in
standard VLSM.

As described earlier, to overcome the under-determination
problem, SVR obtains the desirable solution by constraining
the model to be “flat,” meaning that the norm (i.e., the length
in the high dimensional feature space) of the fitting coeffi-
cient w (jjwjj2) should be small. With this constraint, Eq. (2)
can be expressed as a Lagrangian multiplier-based minimiza-
tion problem [Smola and Sch€olkopf, 2004]:

Minimize : E wð Þ5 1

2
jjwjj21C

XM21

i50

ðni2 n�i Þ (3)

Subject to :

yi2hw;/ðxiÞi2b � e1ni

hw; /ðxiÞi1b2yi � e1n�i

ni; n�i � 0

8>><
>>:

where, constant C controls the trade-off between the flat-
ness and the tolerable fitting error [Hsu et al., 2010], ni

and n�i are slack variables to cope with losses outside of
the soft margins, jnje is an e-insensitive error function
[Vapnik, 1995]:

jnj‹5
0; if jnj < e

jnj2e; otherwise

(
(4)

Since the dimension of w is very large, the constrained
problem in Eq. (3) is more widely solved in its dual form:
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L : 5
1

2
jjwjj21C

XM21

i50

ðni1n�i Þ2
XM21

i50

ðhini1h�i n
�
i Þ

2
XM21

i50

aiðe1ni2yi1 < w;/ðxiÞ > 1bÞ

2
XM21

i50

a�i ðe1n�i 1yi2 < w;/ðxiÞ > 2bÞ

(5)

where, L is the Lagrangian, hi, h�i , ai, and a�i are Lagrange
multipliers and are no less than 0. At the optimal solution,
obL, owL, oni

L, and on�i
L should be all zeroes. By expressing

these properties in explicit equations, we can get a dual
format of the optimization problem as described in Eq. (3):

maximize

2
1

2

XM21

i;j50

ðai2a�i Þðaj2a�j Þh/ðxiÞ;/ðxjÞi

2e
XM21

i50

ðai2a�i Þ1
XM21

i50

yiðai2a�i Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

subject to :
XM21

i50

ðai2a�i Þ50; and ai;a
�
i 2 ½0;C�

(6)

By using a specific type of function (the so-called kernel
function) which can be expressed as an inner product:
k xi; xj

� �
5 h/ xið Þ; /ðxjÞi, Eq. (6) can be easily solved to

get ðai2a�i Þ. The multiple regression model in Eq. (2) can
then be got by

y5
XM21

i50

ðai2a�i Þh/ðxiÞ;UðxÞi1b (7)

By solving the dual problem shown in Eq. (6), the number
of unknown variables changes from N (number of voxels of
the lesion map) in Eq. (3) to M (number of subjects) in Eq. (6).
Since N is much greater than M (N �M), solving the dual
problem requires many fewer computations, and subse-
quently makes SVR a much more tractable problem. Proce-
dures for finding the optimal solution using Eq. (6) are beyond
the scope of this article, interested readers are referred to
Cortes and Vapnik [1995] for details. Similar to SVM, the input
variables (lesion maps in this article) with non-zero coefficient
ðai2a�i Þ are called support vectors. Since ðai2a�i Þ is unique to
each training sample, it can be alternatively denoted by one
variable ki5ai2a�i for the simplicity of description.

In summary, SVR provides a practical solution to the
under-determined multiple regression problem by enforc-
ing the model flatness and ignoring small fitting errors
[Cortes and Vapnik, 1995]. A computationally efficient
SVR can be implemented using its dual-form.

SVR-LSM

In SVR-LSM, all lesion voxels are used as input to find a
behavior predictive model. To explicitly utilizing the
model for LSM, the model’s parametric map (the predic-

tive hyperplane) needs to be back projected into the input
data space (the original brain space) to find the corre-
sponding anatomical locations.

For SVR with a linear kernel k xi; xj

� �
5 xT

i xj, the feature
space for the SVR predictive hyperplane is the same as
that of the input data space (the 3D physical brain space),
so that the lesion-behavior relation at each voxel of the
brain can be directly calculated as

b�5
XM21

i50

ki � xT
m� (8)

For a nonlinear SVR, we need an inverse transform from
the high or infinite dimensional feature space to the original
image space. However, this inverse transformation is gener-
ally nontrivial and may not even solvable. To solve this prob-
lem, approximations have been taken in the so-called
“preimage” method [Arias et al., 2007; Dambreville et al.,
2006; Kwok and Tsang, 2004; Mika et al., 1998]. But the pre-
image methods available in the literature involve
computation-intensive optimizations, which might not even
converge. Based on the specific lesion data properties and
assuming the widely used radial basis function (RBF) kernel
k xi; xj

� �
5exp 2gjjxi2xjjj2

� �
is used, we showed in Appendix

that a preimage method specific to SVR-LSM can be obtained
by using the following approximate back-projection:

b�/
XM21

i50

ki � xT
m� (9)

Note that ki in Eq. (9) is derived from a nonlinear SVR,
which is different from the linear case in Eq. (8).

Through this back-projection, we can get a lesion-
symptom map in the natural brain space, and use it for
assessing regional brain-behavior relationship. For clarity,
this map was termed as the SVR-LSM parametric map or
the SVR-LSM b-map in following sections.

Another approach to get an input–output association map
in the original input data space is “sensitivity mapping”
[Zurada et al., 1994], which has been used in several studies
for visualizing a nonlinear classifier [Kjems et al., 2002; Ras-
mussen et al. 2011; Strother et al., 2002]. Rather than taking a
direct inverse transform of the kernel function, sensitivity
mapping characterizes sensitivity of the model output
(behavior scores in SVR-LSM) to each input data dimension
by calculating partial derivative of the output variable to the
input variable in that dimension and then taking the sum
over all input data dimensions. As we shown in Appendix,
sensitivity mapping and the above preimage can be derived
using first order Taylor expansion-based approximation with
slightly different mathematical manipulations. We thereby
only considered the preimage approach in this study.

Statistical Inference for SVR-LSM

While the prediction accuracy can be used to evaluate
the SVR model, there is not a statistical approach for
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assessing the SVR predictive hyperplane and the associ-
ated SVR-LSM b-map. Similar to what is performed in
SVM-based fMRI data analysis [Mour~ao-Miranda et al.,
2005; Wang et al., 2007], permutation testing can be used
to create a probability map to infer the regional lesion-
behavior relationship reflected by the SVR-LSM b-map.
To be computationally efficient, the behavior data can be
randomly shuffled to generate a series of pseudo SVR-
LSM b-maps. At each voxel, the number of permutations
whose pseudo b values are greater than the one yielded
from the nonpermuted data can be counted and divided
by the number of permutations plus 1 to convert into a
permutation probability. With this probability, we can test
the null hypothesis that the SVR identified brain-behavior
association captured by the SVR-LSM b at each voxel is
the same as that derived from random data. If the P value
is lower than a certain significance level (e.g., P50:01), we
can claim the association found in the current voxel to be
a significant, true association. The same procedure is then
repeated at all voxels to locate all behavior associated
brain regions. A cluster extent threshold can be used to
remove small suprathreshold clusters to further control
false positive rate.

MATERIALS AND METHODS

Subjects

Patients with aphasia caused by left hemisphere stroke
were recruited from the Neuro-Cognitive Rehabilitation
Research Patient Registry at the Moss Rehabilitation
Research Institute [Schwartz et al., 2005] or the Center for
Cognitive Neuroscience Patient Database at the University
of Pennsylvania. Structural magnetic resonance imaging
(MRI) or CT brain imaging was done under a protocol
approved by the IRB at the University of Pennsylvania
Medical School to obtain precise anatomical data. Partici-
pants were paid for their participation and reimbursed for
travel and related expenses. Within all the subjects
enrolled, 106 participants (43% female and 46% African
American) qualified for this study. All of them were right-
handed before aphasia onset. Their mean age was 58
(range 26–79) and mean years of education was 14 (10–21).
All were> 1 month post aphasia onset and living in the
community. The great majority (86%) of them were
chronic, that is,> 6 months post onset. The median post-
onset time was 21.5 months, and the mean post-onset time
was 50.6 months with a standard deviation of 66.6 months.
The median total lesion volume was 76:69 cm3, and the
mean total lesion volume was 104:79 cm3 with a standard
deviation of 86:79 cm3. The individual brain was normal-
ized to the Montreal Neurological Institute “Colin27” brain
template. Lesion data were manually segmented based on
each patient’s high resolution structural image and con-
verted into binary maps. Details about image segmentation

and normalization can be found in our previous publica-
tions using the same dataset [Schwartz et al., 2012].

Language Data

The PNT (Philadelphia Naming Test [Roach et al., 1996],
available online: http://www.mrri.org/philadelphia-nam-
ing-test) tests basic-level object naming capability with 175
object depictions from a variety of semantic categories. A
standard coding scheme classifies each response as correct
or one of five error types. Two error types were analyzed in
this article. SE represent failure to select the right word
based on its meaning. SE are real words that bear a semantic
relation to the target; SE can be synonyms, category coordi-
nates, superordinates, subordinates, or strong associates of
the target (e.g., BOWL to “vase”; BENCH to “park”).
According to cognitive models of anomia, SE can result
from a failure to represent the concept correctly in semantic
memory, or a failure to retrieve the correct word from the
mental lexicon [e.g., Rapp and Goldrick, 2000]. PE represent
failure to correctly retrieve and/or order the word’s constit-
uent phonemes. In this context, PE are nonwords that usu-
ally but not invariably bear a close resemblance to the target
(e.g., GHOST to “goath”). For each participant, SE and PE
were expressed as a proportion of total trials (175) to create
the variables SE and PE, respectively.

Image Acquisition and Lesion Segmentation

Ninety-four participants received research 3.0-T MRI
(n 5 56) or CT (n 5 38) brain scans. Twelve additional par-
ticipants declined scanning; for those subjects, recent clini-
cal scans (8 CT, 4 MRI) with clearly delineated lesion
boundaries were substituted in the lesion tracing proce-
dure. Lesions were manually segmented on the structural
image by a trained technician or experienced neurologist,
both of whom were blinded to the behavioral data [please
refer to details in Schwartz et al., 2009]. The lesion overlap
map for the 106 qualified participants at the left hemi-
sphere is shown in Figure 1a.

VLSM Method with Simple Regression

Only voxels lesioned in �10 patients were included in
the analysis. For each language measure, SE and PE, a
VLSM analysis was performed by running a simple regres-
sion analysis, with the lesion status as the independent
variable and the behavior score as the dependent variable,
at each voxel for PE and SE separately. The fitting coeffi-
cient map (beta-map) was converted into a t-map using
SPM (www.fil.ion.ucl.ac.uk/spm/, Wellcome Institute of
Imaging Neuroscience, London, UK). 1,000 permutations
were performed by randomly permuting the behavior
scores (SE or PE). The lesion versus no lesion contrast map
(VLSM t-map) obtained from the genuine data order was
compared to those obtained by permuting the data at each
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voxel, and the number of permutations yielding higher
VLSM t-value than the genuine one was divided by 1,001
to get the permutation P-value.

SVR-LSM

The same lesion data were used in the SVR-LSM analy-
sis. Only voxels lesioned in � 10 patients were included in
the analysis and formed a valid voxel mask. For each sub-
ject, the lesion statuses of all voxels in the valid voxel
mask were grouped into one column vector. As a general
preprocessing step in SVR, each subject’s lesion data vec-
tor was normalized to have a unit norm, that is, the square
root of the sum of squared elements for each vector equals
to 1. It is important to note that this normalization process
also serves as a direct total lesion volume control proce-
dure (hereafter dTLVC). It differs from the approach pre-
viously adopted [Karnath et al., 2004; Schwartz et al.,
2012], in which the total lesion volume effects were
directly regressed out from the behavior scores. The nor-
malized vectors from all participants were combined into
a feature matrix with rows representing different subjects.
The language scores were also inputted into a column vec-
tor and normalized. libSVM [Chang and Lin, 2011] with
an epsilon-SVR model was used to estimate the SVR
hyperplane with an RBF kernel. A grid searching approach
was used to assess the effects of the two SVR parameters,
C and g, on SVR-LSM. 168 different combinations of C
and g with C changing from 1 to 80, and c changing from
0.1 to 30 were evaluated for both the synthetic data and
the real SE and PE data. The behavior score prediction
accuracy as well as the reproducibility of SVR-LSM were

collected to find the optimal SVR parameters. Prediction
accuracy was measured by the mean correlation coefficient
between predicted scores and testing scores with 40 five-
fold cross-validations. SVR-LSM was evaluated by another
40 times subset analysis, each with a randomly selected 85
subjects, and the correlation coefficient between any two
SVR-LSM b-maps from different subsets was calculated.
The mean of those correlations was used as a reproducibil-
ity index.

Simulations

SVR-LSM was evaluated with synthetic lesion-behavior
relations inserted into 3 a priori cubic ROIs (shown in Fig.
1b) based on the actual lesion data from the 106 subjects.
The ROIs were defined in the left hemisphere, where the
number of lesioned brains at each voxel was at least 10.
Each ROI was a 21 3 21 3 21 mm3 cube. The ROIs were
positioned at different locations to produce different corre-
lations between their lesion volume ratios and the total
lesion volume. This specification was used to evaluate the
effects of total lesion volume control on LSM using both
VLSM and SVR-LSM. The correlations were 0.7301, 0.7002,
and 0.2942 for ROI 1, 2, and 3, respectively.

The artificial brain-behavior relations were generated
based on a weighted sum of lesion volume ratios of the
three ROIs using the following equation:

yi5
X

k

akf ðri;kÞ (10)

where, yi is the artificial score for the i-th subject, ak is the
weight of the k-th ROI to the artificial score, ri;k is the

Figure 1.

Lesion overlap map and predefined ROIs for generating syn-

thetic scores in simulations. a: Lesion overlap map of 106 sub-

jects. Colorbar on the right indicates the number of lesion

subjects. The text above each slice indicates the spatial location

of the sagittal slice in the MNI space. b: Three predefined ROIs

used for generating the synthetic score in simulations. c: The

correlation map between the lesion status of each voxel and the

total lesion volume. Correlation coefficients to the total lesion

volume for ROI 1�3 are 0.7301, 0.7002, and 0.2942, respec-

tively. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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lesion volume ratio of the k-th ROI in the i-th subject,
which was calculated as the ratio of the number of lesion
voxels to the total number of voxels in the kth ROI, and f ð�Þ
is a function for simulating the artificial linear brain-
behavior relationship f xð Þ5x. Four different sets of weights:
{1, 1, 1}, {1, 2, 1}, {1, 1, 2}, and {2, 1, 1} (the three numbers in
the brackets are weights for ROI 1, 2, and 3, respectively)
for the three ROIs were used to generate pseudobehavior
scores with differently weighted contributions from the
three ROIs.

Both VLSM and SVR-LSM were then used to localize the
predefined lesion-symptom regions with and without
dTLVC. Model performance was quantified using the
receiver operator characteristic (ROC) method [Metz, 1978].
To calculate the ROC curves, both the SVR-LSM b-map and
the VLSM t-map were thresholded with values descending
from the maximum to the minimum of the corresponding
map values. At each threshold, a true positive rate (propor-
tion of suprathreshold voxels within the ROIs) and a false
positive rate (proportion of suprathreshold voxels outside
the ROIs) were calculated. The ROC curves were obtained
by plotting the true positive rates versus the false positive
rates for all possible thresholds for each type of methods. A
better performing LSM method should yield a ROC curve
that is closer to the true positive axis while farther away
from the false positive axis. The area under the curve
(AUC) was calculated to quantify the performance, where a
larger AUC means better performance.

To provide a statistical comparison for the lesion-behavior
relation detection performance of VLSM and SVR-LSM, the
above simulations were repeated 100 times. During each
simulation, three nonoverlapping cubic ROIs were randomly
generated within the mostly lesioned area (�10 subjects
were lesioned) as shown in Figure 1a. The AUC values of
all simulations were then compared using paired t-test for
LSM with or without lesion control separately.

SE and PE prediction using SVR-LSM

While the primary purpose of this study was to investi-
gate the use of SVR for LSM, a secondary question that has
yet been explored much in the literature was whether the
SVR model would be useful for predicting the continuous
SE and PE scores using the whole brain lesion map. The
prediction accuracy was evaluated using 40 times fivefold
cross-validations. Each validation used a randomly selected
lesion and behavior data from 4/5 of the entire patients to
train the SVR model, and the rest 1/5 subjects for testing.

RESULTS

Training Parameters

Figure 2 shows the prameter evaluation results for the
RBF kernel-based SVR-LSM. Similar to what reported in
[Rasmussen et al., 2012], prediction accuracy and reprodu-

cibility changed with the two parameters in an opposite
maner: prediction accuracy goes down when reproducibil-
ity goes up. While there is no golden standard for choos-
ing the optimal values, they were chosen to have a
compromised high reproducibility and prediction accu-
racy. All six figures (Fig. 2a–f) shows that prediction and
reproducibility did not change dramatically when C was
between 30 and 80. Since larger C will induce overfitting,
we chose 30 as the optimal value for C. We selected g 5 2
for the synthetic behavior data and g 5 5 for both SE and
PE analysis based on the above mentioned criterium
because the reproducibility for the synthetic behavior data
increased more rapidly than that for the real scores (SE
and PE) along with the increasing of g.

Simulation Results

Detection of the synthetic lesion-behavior relations

Figure 3 shows the results of VLSM and SVR-LSM for
detecting the spatially uniformly weighted (with the
weight set {1, 1, 1}) synthetic linear lesion-behavior associ-
ations. The parametric maps of VLSM and SVR-LSM were
thresholded separately to make the number of suprathres-
hold voxels inside and outside the ROIs equal the total
number of voxels in the three ROIs, to directly compare
both the true positive and false positive voxels. When no
dTLVC was used, all voxels in ROI 3 and most voxels in
ROI 1 went undetected by both methods, although both
methods successfully detected most voxels in ROI 2 (Fig.
3a,c). Without dTLVC, both methods yielded many false
positive voxels in the area between ROI 1 and ROI 2. Since
the lesion status of voxels between ROI 1 and 2 was highly
correlated with the total lesion volume, as indicated by the
lesion overlap map in Figure 1c, it appears that total lesion
volume had a strong effect on LSM results. When dTLVC
was applied, SVR-LSM showed much increased sensitivity
in ROI 1 and 3 (Fig. 3d). VLSM showed relatively
increased sensitivity for ROI 1, but it produced false pos-
tive voxels in areas that were not revealed without dTLVC
(Fig. 1c).

Figure 4 shows the ROC curves of VLSM and SVR-LSM
methods for the same synthetic data used above. Curves
that are closer to the upper left corner mean higher true
positive detection rate at the same level of false positive
detection rate. Consistent with results shown in Figure 3,
SVR-LSM with dTLVC yielded the best ROC performance
as indicated by the AUC value. Without dTLVC, VLSM
and SVR-LSM methods achieved similar ROC performance
with slightly higher AUC in SVR-LSM.

Statistical performance of SVR-LSM for the synthetic
lesion-behavior relation detection

Figure 5 shows box plots of the AUC values of VLSM
and SVR-LSM without or with lesion volume control.
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When no lesion volume control was applied (Fig. 5a),
VLSM and SVR-LSM showed no significant performance
difference (p 5 0.5428). When lesion volume control was
applied (Fig. 5b), SVR-LSM showed significantly better
AUC performance (p < 0:001).

LSM for detecting spatially nonuniformly weighted
lesion-behavior relations

Table I lists the AUC values of the ROC curves as well
as the average b value (for SVR-LSM) and average z-scores

Figure 2.

SVR parameter evaluation results. a, c, and e: are the cross-validation prediction accuracy for

synthetic score, SE- and PE versus lesion association analysis, respectively; b, d, and f: show the

reproducibility of the SVR-LSM b-map for the three datasets, respectively. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(for VLSM, converted from the t-scores before averaging)
for LSM simulations using the aforementioned spatially
nonuniformly weighted lesion-behavior relations. For most
of simulations listed there, SVR-LSM produced larger
AUC values than VLSM with or without dTLVC. Using
dTLVC, the SVR-LSM b values in the three ROIs showed
a high coincidence with the a priori specified weights for
generating the synthetic data.

LSM for SE

Figure 6a–c show the nonthresholded VLSM t-map, the
SVR-LSM b-map, and the suprathreshold permutation
probability maps (p � 0:001, cluster size > 50) for the
lesion-SE relations, respectively. dTLVC was applied for
both VLSM and SVR-LSM. The nonthresholded parametric

maps of VLSM and SVR-LSM were very similar, with a
map-wise correlation coefficient of 0.9401. This confirms
the previously reported association between SE production
and damage in inferior frontal gyrus (Brodmann area 44,
45, and 47) as well as damage in the left middle temporal
gyrus (Brodmann area 21) [Schwartz et al., 2009].

LSM for PE

Figure 6d–f are the nonthresholded VLSM t-map, SVR-
LSM b-map of the lesion-PE relations, and the thresholded
permutation testing results (p � 0:001, cluster size>50),
respectively. VLSM and SVR-LSM (both with dTLVC) pro-
duced very similar lesion-PE association results with a
map-wise correlation coefficient of 0.8709. Both methods

Figure 3.

LSM results for the synthetic linear brain-behavior relations. a and

c: are results of VLSM and SVR-LSM methods without dTLVC; b

and d are results of VLSM and SVR-LSM methods with dTLVC. The

blue cubes indicate a priori ROIs used for inserting the pseudo

brain-behavior relations. Only the sagittal slice at x 5 241 mm in

the MNI space are shown; the seemingly different number of voxels

in different figures was caused by different distributions of the

suprathreshold voxels across different sagittal slices. [Color figure

can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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identified robust lesion-PE associations in central, supra-
Sylvian cortices of the left hemisphere, involving mainly
pre- and postcentral gyrus (Brodmann areas 4/6 and 1/2/
3, respectively) and the supramarginal gyrus; and both
yielded few suprathreshold voxels in the auditory- and
linguistic-sensitive cortices of the posterior superior and
middle temporal gyri.

Lesion-Based Behavior Prediction Accuracy

With the five-fold cross-validations, SVR-LSM showed a
mean prediction accuracy of 0.10 (R square: the square of
the Pearson correlation coefficient between the predicted
value and the true scores, p < 0:001 ) and 0.11 (R square:

the square of the Pearson correlation coefficient, p < 0:001)
for SE and PE, respectively. The total lesion volume
showed a correlation coefficient of 0.3021 and 0.1687 for
SE and PE, respectively.

DISCUSSION

We report a SVR-based MLSM method, SVR-LSM.
Rather than assessing the brain-behavior relation at each
voxel separately as in the standard VLSM, SVR-LSM iden-
tifies the entire lesion-behavior association pattern simulta-
neously. This multivariate learning process and the
nonlinear transform for projecting the input data into a
high dimensional feature space both take account of the
spatial correlations between different lesion voxels into
account. The resultant multivariate lesion-symptom rela-
tion map reflected by the model hyperplane is more influ-
enced by voxels with strong lesion-symptom associations.
Meanwhile, the weak lesion-symptom relations that might
be caused by noise are suppressed, resulting in improved
lesion-behavior detection sensitivity and reduced false pos-
itive rate. Our simulations clearly showed the benefit of
using SVR-LSM for detecting the synthetic lesion-behavior
relationship, in terms of higher sensitivity and specificity
than VLSM. This scenario is similar to making statistical
inference for a cluster of correlated voxels.

Lesion volume control is an important component of
LSM. In previous studies, lesion volume has been regressed
out from the behavior scores [Karnath et al., 2004; Schwartz
et al., 2012] to control its effects. Because local lesion statuses
are correlated with total lesion volume and both contribute
to brain dysfunctions, regressing out lesion volumes from
the behavior scores will inevitably suppress the relation
between local lesion status and behavior score. One conse-
quence is that lesions in regions that are highly correlated
with total lesion volume may be treated as total lesion vol-
ume effects and inappropriately excluded from the final
results. To avoid this over-correction, a better approach is to

Figure 4.

ROC curves of SVR-LSM and VLSM with or without dTLVC for

detecting the synthetic brain-behavior relationship. The numbers

in the legend are the AUC value for different methods. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5.

Statistic comparison results for the AUC values of VLSM and SVR-LSM without dTLVC (a)

and with dTLVC (b). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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apply volume control directly to the lesion data similar to
the volume control used in the voxel-based morphometry
[Ashburner and Friston, 2000]. This dTLVC turns out to be
a routine preprocessing step in SVR. Our simulations
showed that dTLVC plays a significant role in SVR-LSM.
First, SVR without dTLVC could not reach the optimal per-
formance, as expected. Second, the synthetic data had a
strong volume effect, so the false positive rate was high in
voxels adjacent to the prior ROIs. Removing volume effects
greatly suppressed those false positives, due to the multivar-
iate processing. In the analysis of actual patient data, SVR-
LSM with dTLVC identified reliable brain-SE relations in a
region (left lateral prefrontal cortex) that in our earlier stud-
ies had failed to survive correction for total lesion volume
control [Walker et al., 2011; see also Schwartz et al., 2009].
We maintain that the previously used method, which cor-
rected for lesion volume by regressing it out of the behav-
ioral measure (SE), may be excessively conservative.

Using previously published aphasia patient data, SVR-
LSM showed much higher sensitivity than VLSM for identi-
fying both brain-SE and brain-PE relations. Major signifi-
cant clusters found by SVR-LSM confirmed and extended
our previous findings with VLSM. In particular, the SVR
analysis of SE identified a cluster in the mid-to-anterior
part of the left middle temporal gyrus and another in the
left lateral prefrontal cortex [Schwartz et al., 2009; Walker
et al., 2011]. The former area is strongly linked to verbal
semantic processing [Mesulam et al., 2013; Patterson et al.,
2007], the latter to executive control of semantic retrieval
[Bookheimer, 2002; Schnur et al., 2009]. Therefore, it may be
that lesions in these areas cause SE for different reasons.
Regardless, it can be inferred from the present findings that
these temporo-frontal areas form a deficit-contributing net-
work for SE. This is because unlike VLSM, the multivariate
LSM picks up the coherence (correlation) of the different
areas, as well as their independent contributions.

The SVR-LSM analysis of PE confirmed our previous find-
ings with VLSM associating PE in naming with lesions in
premotor and anterior parietal cortices, and not Wernicke’s
area [Schwartz et al., 2012; see also Cloutman et al., 2009;
Foundas et al., 1998]. Such convergence of results from two
very different lesion mapping techniques inspires confi-
dence in the results. This is important, because the results
for PE were not predictable from current theorizing. The
identified brain-PE relationships go against the long-held
view that PE in naming are symptomatic of impaired
retrieval of abstract or auditory-based phonemic representa-
tions stored in posterior temporal cortices [Dell et al., 1997;
Indefrey and Levelt, 2004; Wilson, et al., 2009; Wernicke,
1874/1969], aligning better with newer models featuring
close interdependence of phonological and sensori-motor
processes in production [Hickok, 2012].

Figure 6 suggests little if any overlap between the SE
and PE associated regions. Since the data that entered into
these separate analyses came from the same group of
patients and the very same task (picture naming), it
appears likely that semantic and phonological operations
in word production are subserved by different brain sys-
tems, the former localized to temporo-frontal regions of
the left hemisphere, the latter to fronto-parietal regions.

Parameter determinations for nonlinear SVR are impor-
tant but nontrivial. For output prediction, small C allows a
better prediction performance, large C yields small fitting
errors for the training data; small g allows a better model
flexibility (wider kernel and smoother SVR hyperplane).
However, higher prediction accuracy does not mean a bet-
ter spatial pattern interpretation for the model predictive
hyperplane [Rasmussen et al., 2011]. In [Rasmussen et al.,
2011], the pattern reproducibility across various subsets of
the entire samples was suggested as an additional index for
determining parameters. In this study, we took a balance
between prediction accuracy and model reproducibility to

TABLE I. Lesion-behavior relation detection results of SVR-LSM and VLSM using different synthetic lesion-behavior

relations generated with different relation weights for the a priori ROIs

Weights for ROIs {1, 1, 1} {1, 2, 1} {1, 1, 2} {2, 1, 1}

SVR-LSM (dTLVC) AUC value 0.9405 0.8961 0.8713 0.9036
Mean

b-value
ROI-l 4.2782 3.034 2.1938 6.1869
ROI-2 4.8871 6.8202 2.8001 3.4520
ROI-3 5.2198 4.0095 5.8688 3.5301

VLSM (dTLVC) AUC value 0.7052 0.6185 0.8072 0.6478
Mean

z-value
ROI-l 4.4511 3.8026 3.5386 5.6773
ROI-2 4.4520 6.5614 2.9188 3.7504
ROI-3 1.4795 0.3437 3.4840 0.8626

SVR-LSM (no dTLVC) AUC value 0.7574 0.6793 0.8322 0.7188
Mean

b-value
ROI-l 7.4194 5.9060 6.7722 7.8349
ROI-2 8.1215 8.6247 6.7665 6.8357
ROI-3 3.8664 2.1706 6.5550 2.7985

VLSM (no dTLVC) AUC value 0.7227 0.6403 0.8421 0.6829
Mean

z-value
ROI-l 7.4312 6.5513 5.9898 8.6966
ROI-2 8.1426 9.5399 5.8576 7.3014
ROI-3 3.4899 2.1608 5.8486 2.7169
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Figure 6.

Lesion-symptom relation mapping results using 106 Aphasia

patients’ data, both VLSM and SVR-LSM implements include

dTLVC to control the effect of total lesion volume. a–c: are for

lesion-SE relations, and d–f are for lesion-PE relations. a: The

non-thresholded VLSM t-map; b: the non-thresholded SVR-LSM

b-map; c: thresholded (p�0.001, cluster size> 50) permutation

probability maps of the lesion-SE relations detected by VLSM

(blue color) and SVR-LSM (red color); d: The non-thresholded

VLSM t-map; e: The non-thresholded SVR-LSM b-map; f: thresh-

olded (p�0.001, cluster size> 50) permutation probability maps

of the lesion-PE associations detected by VLSM (blue color) and

SVR-LSM (red color). The text above each slice indicates the

spatial location of the sagittal slice in the MNI space. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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find the optimal values for the two involved parameters.
While the optimal values were determined using the 106
patients’ data, similar values should work for other data
too as we empirically tested (data not shown). Nevertheless,
a reasonable range for C and g of [1�50] and [0.5�10]
respectively can be used as the searching range. For using
SVR to predict behavior scores, the parameters should be
separately tuned using the prediction accuracy as the opti-
mization objective function during cross-validations. While
we only reported a prediction accuracy using the parame-
ters selected for a best LSM detection, additional experi-
ments using parameters tuned for a better prediction
accuracy did the job by increasing the SE prediction accu-
racy (R-square) from 0.10 to 0.18 though that is still low.

Nonlinear SVR was used in SVR-LSM. While a linear
SVR could still be used, nonlinear SVR provides more flexi-
bility for model selection to get either better prediction
accuracy or better association localization. Additional data
analysis showed (Fig. 7) that linear SVR was suboptimal as
compared to the nonlinear SVR even with the optimized
cost parameter C for linear SVR (C511). But remapping the
nonlinear SVR model back into the input data space has
been a challenge. Based on the lesion data properties, we
derived an approximate preimage method, which turns out
to be dual to the “sensitivity mapping” approach. Addi-
tional data analysis (data not shown) showed that SVR-

LSM b-maps were nearly the same as the sensitivity maps
derived from the sensitivity mapping process.

Multiple comparison correction is a big topic in neuroi-
maging and LSM because of its over-conservation even
after considering the spatial correlations between neighbor-
ing voxels. In SVR-LSM, the lesion-symptom associations at
all voxels are identified simultaneously rather than being
pursued as independent events, so there are no multiple
comparisons involved for getting the association parametric
map. While SVR does not provide a statistical framework
for inferring the model hyperplane, an approximate
approach is using cross validations to find the prediction
accuracy and its probability. For inferring the regional
effects (thresholding the SVR-LSM sensitivity map), it is still
not clear whether a multiple comparison correction should
be applied or not. A compromise approach might be getting
a conditional probability for each voxel by combining the
probability of the model prediction power and the permuta-
tion probability. Nevertheless, this will be an interesting
topic in future study.

While the major focus of this study was to exploit the
utility of SVR for LSM, we also provided the first evidence
that multivariate lesion-behavior relationship patterns can
be useful for predicting continuous behavioral scores.

In conclusion, SVR-LSM with dTLVC is a useful method
for lesion symptom analysis with higher sensitivity and

Figure 7.

Thresholded (p� 0:001, cluster size> 50) permutation probability maps of the nonlinear SVR-LSM

(Red) and linear SVR-LSM (Blue). a: results for SE-lesion relations, b: results for PE-lesion relations.

The text above each slice indicates the spatial location of the sagittal slice in the MNI space.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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specificity than standard VLSM. It is also potentially useful
for using brain lesion status to predict behavioral perform-
ance in clinical practice.

APPENDIX

SVR WITH A LINEAR KERNEL

For SVR model with a linear kernel k xi; xj

� �
5 xT

i xj, the
model in Eq. (7) could be written as

y5
XM21

i50

ki � xT
m � x1b: (A1)

Since linear kernel does not transform the lesion data
into high dimension, the coefficient for each voxel’s lesion
status in the brain image space could be expressed by
b�5

PM21
i50 ki � xT

m, which is identical to the sensitivity map
for a linear kernel [Rasmussen et al., 2011].

SVR WITH THE RBF MODEL

The RBF kernel function Kðxi; xjÞ can be described by
the inner product of / xið ÞT and /ðxjÞ

K xi; xj

� �
5/ xið ÞT/ðxjÞ5 exp 2gjjxi2xjjj2

� �
(A2)

With the trained coefficients ki5ai2a�i (i50 �M21), the
lesion-brain model can be written as
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where e is Euler’s number (e 	 2:71). Since the total lesion
volume of subjects is typically very large (typically hun-
dreds of thousands to even millions of lesion voxels), the
normalized lesion data value xi;j and xj are very small. We
can then use the first Taylor expansion-based approxima-
tion of ex21 	 x (	 means approximation) and get
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Because lesion data are normalized to have a norm of
1,
P

j

P
i kið2 gx2

i;j2gx2
j Þ5g

P
i ki

P
jð2 x2

i;j2x2
j Þ5g

P
i kið21

21Þ522g
P

i ki50. Since 0 � xi;j; xj 
 1, the greater than 3-
order terms are very small and can be then removed. Con-
sidering all these facts and

P
i ki50; we can get:
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The other type of approximate preimage expression can
be derived by approximating Eq. (A2) with its first order
Taylor expansion:
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Where

okTkx

oxj
5
X

i

ki2gðxj
i2xjÞ exp 2gjjxi2xjj2

� �
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which is exactly the same as “sensitivity mapping” [Ras-
mussen et al., 2011; Zurada et al., 1994]. This sensitivity
mapping formula is known to have a sign cancellation
problem [Rasmussen et al., 2011]. But it is less problematic
for lesion data because there are large amount of subjects
do not have lesion at many voxels, so they would not con-
tribute to the summation process. Additionally those sub-
jects showing large distance from the evaluated one
(jjxi2xjj2Þ will have very minor contribution because the
exponential term becomes close to 0. A quadratic formula
can still be used if there is severe sign cancellation.
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